Application of Medicinal Herbs to Aquaculture in Asia

Sataporn DIREKBUSARAKOM

School of Agricultural Technology, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand.

ABSTRACT

Aquaculture has increased greatly in Asia, but there are various problems associated with acquacultural production one of which is the use of antimicrobial agents resulting in more resistant bacterial strains which adversely affect human health and the natural environment. This paper presents information on the role and application of herbs for aquaculture in Asia.

Key words: Medicinal herbs - Aquaculture - Asia

Asian countries have witnessed the growth of aquaculture in recent years. The ultimate goal is to produce the greatest possible weight per culture unit in most aquacultural operations for culture fish, crustaceans or mollusc.

As aquacultural production becomes more intensive, the incidence of disease including various infectious diseases has increased as a result of it leading to significant economic losses. Diseases are a crucial factor which inhibits the expansion of aquaculture. Various chemotherapeutants have been used for treatment or prevention of diseases. However, the use of antimicrobial agents in aquaculture has resulted in more resistant bacterial strains. These resistant bacterial strains could have a negative impact on the therapy of fish diseases or human diseases and the environment of the fish farms (1).

Herbs have been widely used in veterinary and human medicine. They are natural products that are not only safe for consumers but also widely available throughout Asia. Nowadays herbs or herbal products also have a significant role in aquaculture.

Rotenone is a traditional herb widely used to kill fish in shrimp ponds, because it is highly toxic for fish even at low concentration and is rapidly degraded in the natural environment (2). Schnick (3) reported that an effective dose of rotenone is 50-200 mg/l depending on the purpose of treatment, the fish species present, and condition at the time of application.

Wild satavari (*Asparagus racemous*) is widely used in India as ayurvedic (an ancient Indian Vadec system of medicine) medicine for promoting human growth. It produced a similar result in *Labeo rohita* fry (4).

Many kinds of herbal medicine have been used in China to control fish disease and have produced satisfactory results (5) **(Table 1)**. Shagnliang et al (6) reported the antimicrobial activity of 5 Chinese herb extracts, *Stellaria aquatica*, *Impatiens biflora*, *Oenothera biennis*, *Artemisia vulgaris* and *Lonicera japonica* against 13 bacterial and 2 viral fish pathogens. *Aeromonas salmonicida* and *Edwardsiella ictaluri* were the most sensitive to these extracts. Among them,

S. aquatica was the most effective both in terms of the number of pathogens inhibited and the degree of inhibition. *L. japonica* showed some inhibitory action against both IPN and IHN viruses, while *A. vulgaris* and *S. aquatica* only inhibited IHN virus.

In Vietnam, the Institute of Ecology and Bioresources has undertaken applied research on some medicinal herbs for prophylaxis and treatment of fish and shrimp diseases such as ulcer, intestinal disease, white mouth, white head, red skin, and red spot in fish, and luminescence and brown spot disease in shrimp (7) (Tables 2,3).

In Thailand, during the outbreak of epizootic ulcerative syndrome (EUS) in 1983 the snake-head fish farmers in Uthaitanee, used the bark of cork wood tree (*Sesbania grandiflora*) for the treatment of haemorrhage lesions. Most of the fish recovered after treatment. Since 1990 many kinds of herbs have been introduced to shrimp farms suffering from infectious diseases. For example, garlic or onion has been mixed into pellets for daily feeding to shrimps to prevent bacterial infection. A scientific study to prove the antibacterial activity of guava (*Psidium guajava*) against bacteria pathogenic for shrimp was initiated in 1992 (8). The minimum inhibition concentrations of guava against *Vibrio* and *A. hydrophila* were 1.25 and 0.625 mg/ml respectively. They found that guava eliminated luminous bacteria from black tiger shrimp (*P. monodon*) more effectively than oxytetracycline (9). Direkbusarakom et al (10) reported that *Phyllanthus amarus* and *P. urinaria* contained an antiviral substance which was active against yellow head virus. Many kinds of Thai traditional herbs showed antiviral and antibacterial activity against fish and shrimp pathogenic agents (**Tables 4,5**) (11,12,13)

However, our knowledge and understanding of the application of medicinal herbs to aquatic animal production is still somewhat limited, and further research on this subject is required.

REFERENCES

- 1) Smith P Hiney MP Samuelsen OB. Bacterial resistance to antimicrobial agent used in fish farming: a critical evaluation of method and meaning. *Ann Rev Fish Dis 1994; 4: 273-313.*
- Cruz-Lactierda ER. Toxicity of rotenone to milkfish, *Chanos chanos*, and tilapia, *Oreochromis mossambicus*. *In*: Disease in Asian Aquaculture I. M Shariff RP Subasinghe and JR Arthur (eds). Fish Health Section, Asian Fisheries Society, Manila, 1992, p. 419-23.
- 3) Schnick RA. A review of the literature on the use of rotenone in fisheries. US Fish Wildl Serv Lit Rev, 1974; 74: 130.
- Kavita K Sharma LL. Use of herb (*Asparagus recemous* Wild) supplemented diet for promoting growth in the fry of *Labeo rohita*. The fourth Indian Fisheries Forum, 1996, p.136.
- 5) Rajandra KR. Prevention and control of fish diseases by herbal medicine. *Fish Health Section News 1990; 3: 3-4.*
- 6) Shangliang T Hetrick FM Roberson BS Baya A. The antibacterial and antiviral activity of herbal extracts for fish pathogens. *J Ocean University of Qingdao 1990; 20: 53-60.*
- 7) Dung L. Herbs and their application for control fish disease in Vietnam. Technical paper. National Aquaculture Research Institute, Vietnam, 1990, p.7.

Medicinal herb	Disease	Dosage	Application	Direction
Euphorbia humifusa	Enteritis	500 g dry or 2.5 kg fresh /100 kg of fish	Feeding	Once a day for 3 consecutive days
Acalypha australis	Enteritis, Gill rot	125-500 g dry or 2 kg fresh/ 100 kg of fish	Feeding	Once a day for 3 consecutive days
Polygonum hydropiper	Enteritis, Gill rot	500 g dry or 1.5 kg fresh /100 kg of fish	Feeding	Once a day for 3 consecutive days
Andrographis paniculata	Enteritis	2 kg dry or 3 kg fresh /100 kg of fish	Feeding	
Portulaca oleracea	Enteritis	1.5-3 kg fresh /100 kg of fish	Feeding	
Artemisia argyi	Enteritis, Gill rot	mixed with 100 g powder of <i>A. paniculata</i> & 500 g powder of <i>P. oleracea</i> /10,000 fingerlings	Immersion	
Duchesnes indica	Enteritis	1 kg fresh/100 kg of fish	Feeding	
Sapium sebiferum	White head	250 g leaf powder/100 kg of fish	Feeding	
Pinus massoniana	Enteritis, Gill rot	5 kg Acorus calamus and 5 kg castor oil	Immersion	Spread them in 1/15 ha water area
	Lernaeosis	plant		to control Enteritis & gill rot for lernaeosis, 20 kg pine per in 2-3 batches, grind them 1/15 ha water area
Cayratia japonicus	White head, White mouth	1.5-3 kg leaf	Immersion	Grind the leaf & spread in the pond to make 1.5-2 ppm
Melia azedarach	Trichodinasis & Lernaeosis			
Rheum officinals	White head White mouth, Gill rot	Immerse 1 kg <i>R. officinals</i> in 20 lit of 0.3% ammonical water for 6-12 h & then dilute & spread in pond water per 1/5 ha. water area to make the concentration 2.5-3.7 ppm	Immersion	
Galla chinensis	White head, White mouth		Immersion	Grind decocted <i>G. chinensis</i> and spray them over the pond
Area catechu	<i>Botrioceohalus</i> <i>gowkongensis</i> , Tape worm, Cestode	One part of <i>A. catechu</i> with 5 parts of feed	Feeding	Once per day for seven consecutive days

 Table 1. Medicinal herbs and their application for control of fish diseases in China (5)

Medicinal herb Disease Dosage Application Direction 0.3-0.5 kg/ton Melia azedarach Lernaeosis Spread to the pond Immersion Derris ellipica Argulus Areca catechu Helminthosis in catfish 5 g/ 1 kg of fish Mixed with pellet Feeding Helminthosis in catfish 2 g/1kg of fish Mixed with pellet Leucaena glauca Feeding

Table 2. Medicinal herbs and their application treatment of parasite infection in Vietnam (7)

•

Table 3.	Antibacterial activity	y of Vietnam's	herbs against	some fish and shrii	np patho	ogenic bacteria (7)
						U	

Medicinal herb	Inhibitory effect	Treatment for disease
Euphorbia hirta	Aeromonas hydrophila	Brown spot in M. rosenbergii and red spot
		disease in grass carp
Euphorbia thymipholia	Vibrio parahaemolyticus	Vibriosis of Penaeus monodon
Wedelia calendulacea	A. hydrophila	Brown spot in M. rosenbergii and red spot
		disease in grass carp
Eclipta alba	A. hydrophila and Edwardiella tarda	Necrosis in catfish
Lactuea indica	A. hydrophila	Brown spot in M. rosenbergii and red spot
		disease in grass carp
Portulaca oleracea	A. hydrophila	Brown spot in M. rosenbergii and red spot
		disease in grass carp
Phyllanthus urinaria	A. hydrophila and Edwardiella tarda	Bacterial disease of Pangasius fish
Polygonum hydropiper L.	A. hydrophila	Bacterial disease of Pangasius fish

Herb	Antiviral agair (Plaque 1	1st fish pathogen reduction rate, %	ic virus 6)	Antiviral against shrimp pathogenic virus (Survival rate of shrimp, %)		
-	IHNV	IPNV	OMV	YHV	WWSV	
Cassia alata	99	< 0	100	100	53.3	
Calophyllum inophyllum	97	< 0	92	100	100	
Clinacanthus sp.	100	< 0	100	100	NT	
Clinacanthus nutans	100	< 0	100	100	100	
Glinus oppositifolis	97	< 0	76	0	46.7	
Hura crepitan	65	< 0	21	100	NT	
Momordica charantina	68	< 0	47	0	45	
Ocium sanctum (red)	100	< 0	100	100	0	
O. sanctum (white)	99	< 0	100	100	0	
Orchocarpus siamensis	97	< 0	91	40	NT	
Phyllanthus acidus	100	< 0	100	100	76	
P. amarus	100	< 0	100	100	58	
P. debelis	97	< 0	93	0	82	
P. reticu; atus	100	< 0	99	20	50	
P. urinaria	100	< 0	100	100	100	
Psidium guajava	100	< 0	100	100	85	
Tinospora cordifolia	100	< 0	90	100	0	
T. crispa	97	< 0	91	80	68	

Table 4. Antiviral activity of Thai traditional herbs against fish and shrimp pathogenic virus (13)

Harb	Percent of inhibited strain in each concentration of herb (mg/ml)						
Herb -	0	0.31	0.625	1.25	2.5	5	10
Andrographis paniculata	0	0	0	0	8.3	33.3	83.3
Cassia alata	0	0	0	0	0	0	8.3
Clinacanthus nutans	0	0	0	0	0	0	0
Eclipta alba	0	0	0	0	8.3	33.3	100
Momordica charantia	0	0	0	75	100	100	100
Ocimum sanctum (red)	0	0	0	0	0	0	0
O. sanctum (white)	0	0	0	0	0	0	0
Phyllanthus acidus	0	0	0	0	0	0	0
P. amarus	0	0	0	0	0	0	8.3
P. debelis	0	0	0	0	0	16.7	91.7
P. pulcher	0	0	0	0	0	0	8.3
P. reticulatus	0	0	0	0	8.3	33.3	100
P. urinaria	0	0	0	0	8.3	16.7	91.7
Psidium guajava	0	0	8.3	25	50	100	100
Tinospora cordifolia	0	0	0	0	0	0	8.3
T. crispa	0	0	0	0	0	0	0

Table 5. Antibacterial activity of Thai traditional herbs against fish and shrimp pathogenic bacteria (13)

- 8) Direkbusarakom S Aekpanithangpong U. The efficiency of the crude extract from the leaf of guava (*Psidium guajava* L.) on *Vibrio* spp isolated from diseases tiger prawn (*Penaeus monodon*). Proceedings of the seminar on fisheries. Department of Fisheries, 1992, p. 259-62.
- 9) Direkbusarakom S Ezura Y Yoshimizu M Herunsalee A. Efficacy of Thai traditional herb extracts agianst fish and shrimp pathogenic bacteria. *Fish Pathol* 1998; 33(4): 437-41.
- 10) Direkbusarakom S Herunsalee A Boonyaratpalin S Danayadol Y Aekpanithanpong U. Effect of *Phyllanthus* spp against yellow-head baculovirus infection in black tiger shrimp, *Penaeus monodon. In*: Diseases in Asian Aquaculture II. M Shariff JR Arthur & R.P Subasinghe (eds). Fish Health Section. Asian Fisheries Society, Manila, 1995, p. 81-8.
- 11) Herunsalee A Direkbusarakom S. Investigation on the bioactive Thai medicinal plants to virus in tiger prawns. Conference on Marine Biotechnology in the Asian Pacific Region, Bangkok, 16 20 November, 1993, p. 104 6.
- 12) Direkbusarakom S Herunsalee A Yoshimizu M Ezura Y. Antiviral activity of several Thai traditional herb extracts agianst fish pathogenic viruses. *Fish Pathol* 1996; 31(4): 209-13.
- 13) Direkbusarakom S. Studies on the Antiviral and Antibacterial Activity of Thai Traditional Herbs and Application to Prevent the Viral and Bacterial Diseases in Aquactic Animals. PhD Thesis, Faculty of Fisheries, Hokkaido University, Japan, 1998, p.176.

บทคัดย่อ

สถาพร ดิเรกบุษราคม การประยุกต์ใช้พืชสำหรับการเพาะเลี้ยงสัตว์น้ำในเอเชีย

การเพาะเลี้ยงสัตว์น้ำมีการขยายอย่างกว้างขวางและมีปัญหาหลายประการตามมา ปัญหาหนึ่งคือการใช้สารด้านจุลชีพ ซึ่งมีผลทำให้เกิดการดื้อยาของแบคทีเรีย จึงมีผลต่อ มนุษย์และสภาพแวคล้อม วัตถุประสงค์ของบทความนี้เพื่อให้ข้อมูลเกี่ยวกับบทบาทและ การประยุกต์ใช้พืชชนิดต่าง ๆ โดยการเพาะเลี้ยงสัตว์น้ำ

¹ สำนักวิชาเทคโนโลยีการเกษตร มหาวิทยาลัยวลัยลักษณ์ อำเภอท่าศาลา จังหวัดนครศรีธรรมราช 80160